DRSP : Dimension Reduction For Similarity Matching And Pruning Of Time Series Data Streams
نویسندگان
چکیده
Similarity matching and join of time series data streams has gained a lot of relevance in today’s world that has large streaming data. This process finds wide scale application in the areas of location tracking, sensor networks, object positioning and monitoring to name a few. However, as the size of the data stream increases, the cost involved to retain all the data in order to aid the process of similarity matching also increases. We develop a novel framework to addresses the following objectives. Firstly, Dimension reduction is performed in the preprocessing stage, where large stream data is segmented and reduced into a compact representation such that it retains all the crucial information by a technique called Multi-level Segment Means (MSM). This reduces the space complexity associated with the storage of large time-series data streams. Secondly, it incorporates effective Similarity Matching technique to analyze if the new data objects are symmetric to the existing data stream. And finally, the Pruning Technique that filters out the pseudo data object pairs and join only the relevant pairs. The computational cost for MSM is O(l*ni) and the cost for pruning is O(DRF*wsize*d), where DRF is the Dimension Reduction Factor. We have performed exhaustive experimental trials to show that the proposed framework is both efficient and competent in comparison with earlier works.
منابع مشابه
Online Detecting and Predicting Special Patterns over Financial Data Streams
Online detecting special patterns over financial data streams is an interesting and significant work. Existing many algorithms take it as a subsequence similarity matching problem. However, pattern detection on streaming time series is naturally expensive by this means. An efficient segmenting algorithm ONSP (ONline Segmenting and Pruning) is proposed, which is used to find the end points of sp...
متن کاملScalable Similarity Matching in Streaming Time Series
Nowadays online monitoring of data streams is essential in many real life applications, like sensor network monitoring, manufacturing process control, and video surveillance. One major problem in this area is the online identification of streaming sequences similar to a predefined set of pattern-sequences. In this paper, we present a novel solution that extends the state of the art both in term...
متن کاملSSH (Sketch, Shingle, & Hash) for Indexing Massive-Scale Time Series
Similarity search on time series is a frequent operation in large-scale data-driven applications. Sophisticated similarity measures are standard for time series matching, as they are usually misaligned. Dynamic Time Warping or DTW is the most widely used similarity measure for time series because it combines alignment and matching at the same time. However, the alignment makes DTW slow. To spee...
متن کاملClustering Time Series Online in a Transformed Space
Similarity-based retrieval has attracted an increasing amount of attention in recent years. Although there are many different approaches, most are based on a common premise of dimensionality reduction and spatial access methods. Relative change of the time series data provides more meaning and insight view of problem domain.. This paper presents our efforts on considering the relative changes o...
متن کاملAn Empirical Comparison of Distance Measures for Multivariate Time Series Clustering
Multivariate time series (MTS) data are ubiquitous in science and daily life, and how to measure their similarity is a core part of MTS analyzing process. Many of the research efforts in this context have focused on proposing novel similarity measures for the underlying data. However, with the countless techniques to estimate similarity between MTS, this field suffers from a lack of comparative...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1312.2669 شماره
صفحات -
تاریخ انتشار 2013